
A. Introduction1

The aim of this coursework is to develop the student’s programming skills,

particularly in the area of developing multithreaded applications. The students have to

elaborate Windows console application IAS0410ObjPlantLogger.exe (shortly logger)

in C++ using the object-oriented programming concepts introduced in C++ versions

up to 17. To get the highest mark, the students may complete his/her application with

graphical user interface implemented in Qt framework.

B. Plant emulator

1. Basic concepts

Suppose we have a chemical plant consisting of several processing units like reactors,

heaters, coolers, separators, tanks, etc. The processing units are connected with pipes.

The processing units and pipes are equipped with various measurement instruments

recording the temperature, pressure, concentration of some substance in a solution,

flow speed in pipes, etc. The results of measurements are sent to a computer which

views them on screem and stores in a log file.

According to the terminology used in this coursework, we tell that the processing

units and pipes have measurement points. Each measurement point has an instrument

measuring a physical value (for example, the temperature in a reactor). The set of

measurement points belonging to the same processing unit or pipe is the measurement

channel.

Example:

Here the plant consists of reactor and two pipes. The measurement points P1, P2 and

P3 are for measuring the temperature, pressure and liquid level in the reactor. Points

P4 and P5 measure the liquid flow speed in pipes.

The measurement channel Ch1 incorporates measurement points P1, P2 and P3.

Channels Ch2 and Ch3 contain only one point (P4 and P5 resepectively).

1 Read first the overview

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Ulevaade%202024.pdf

2. Emulator overview2

In this coursework the chemical plants are replaced by emulating software

implemented as a DLL. The Windows 64-bit (x64) IAS0410PlantEmulator.dll is able

to emulate 10 different plants. The description of plants (i.e. the lists of channels,

points and measured values) is presented in JSON-formatted3 file IAS0410Plants.txt.

You can find the both files as well as your plant number set by the instructor here.

You may store the downloaded emulator DLL into any folder. The IAS0410Plants.txt

must in the same folder with your IAS0410ObjPlantLogger.exe.

The emulator must be linked to the logger explicitly (see slides Dynamic link libraries

(6), (7) and (8) from chapter Concurrency). It exports two functions:

LIBSPEC void SetIAS0410PlantEmulator(string, int) throw(exception);
LIBSPEC void RunIAS0410PlantEmulator(ControlData *) throw(exception);

As the extern “C” linking is applied, the name mangling is suppressed.

The SetIAS0410PlantEmulator function has two input parameters: the complete name

and path of the IAS0410Plants.txt (you can get it processing the logger command line

parameters) and the plant number. This function retrieves the plant description from

JSON-formatted text and makes all the preparations necessary for running. In case of

errors it throws C++ standard exception (see slides C++ standard exceptions (1), (2)

and (3) from chapter Deeper into C++).

Function RunIAS0410PlantEmulator launches a typical producer thread (see slide

Conditional variables (8)…(10) from chapter Concurrency). Consequently, your

logger must launch a consumer thread. IMPORTANT: the producer thtread is

detached.

The ControlData struct is defined as follows:

struct ControlData
{
 mutex mx;
 condition_variable cv;
 atomic<char> state;
 vector<unsigned char> *pBuf;
 promise<void> *pProm;

};

To understand the meaning of attributes from ControlData struct you need to study

chapters Concurrency and Containers and algorithms.

The logger uses attribute state to control the emulator:

• ‘r’ – The emulator launches the producer thread and keeps it running. The

producer generates data and stores in vector *pBuf. The length of vector is set

by the emulator.

• ‘s’ – The emulator forces the producer thread to exit.

• ‘b’ – The producer thread is running but temporarily does not generate data.

To resume the normal working the logger must set the state back to ‘r’.

2 On first reading simply omit the most of this chapter
3 About JSON see http://www.json.org/

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Multithreading.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Cpp%20Deeper.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Multithreading.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Multithreading.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Containers%20and%20Algorithms.pdf
http://www.json.org/

The framework of producer thread is as follows:

void producer()
{
 //
 ControlData* pCd;
 while (true)
 {
 unique_lock<mutex> lock(pCd->mx);
 if (pCd->state == 's')
 {
 break;
 }
 else if (pCd->state == 'b')
 {
 //
 }
 // Create data, fill the buffer
 pCd->cv.notify_one();
 pCd->cv.wait(lock);
 }
 pCd->cv.notify_all();
 pCd->pProm->set_value(); // inform that the emulator has ended

}

3. Measurement results

The measurement results are delivered in packages. The emulator sends packages on

random moments and the pauses between packets may be several seconds long.

The first package contains measurement results from all the points, i.e. all the

channels and all the points are present. The contents of the following packages,

however, is not preset – some of the points or even the complete channels may be

omitted. Generally, the contents of packages except the first one is occasional.

Example (see also the figure above):

The first packet is complete:

Ch1: P1 = 49.6°C, P2 = 1.67atm, P3 = 98%; Ch2: P4 = 0.024m³/s; Ch3: P5 =

0.151m³/s 4.

The second packet contains three values (Ch2 and P3 from Ch1 are missing):

Ch1: P1 = 55.2°C, P2 = 1.941atm; Ch3: P5 = 0.026m³/s.

The third packet contains only one value:

Ch2: P4 = 0.047m³/s.

The emulator does not send empty packages.

The measurement packages are formatted as follows:

4 The values are created by generators of random numbers. Do not draw parallels between them and the

real world.

1. The first four bytes of a packet are for storing the package length (i.e. the total

number of bytes in package). It is a regular C/C++ integer.

2. The next four bytes present the number of channels included into the current

package. It is also a regular C/C++ integer.

3. The following bytes are for the sequence of the channel packages.

Each channel package is formatted as follows:

1. The first four bytes present the number of measurement points included into the

current channel package. It is a regular C/C++ integer.

2. The next bytes present the name of channel. It is a regular ASCII (not Unicode)

C/C++ string including the terminating zero byte at the end.

3. The following bytes are for the sequence of the point packages.

Each point package is formatted as follows:

1. The starting bytes present the name of point. It is a regular ASCII (not Unicode)

C/C++ string including the terminating zero byte at the end.

2. The following bytes present the measured value. It may be a four-byte integer or

eight-byte double number.

Example: the first package described above includes the following bytes:

1. Bytes [0:3] – integer 83 as the total number of bytes in this package.

2. Bytes [4:7] – integer 3 as the number of channels in this package. After that

without any delimiters the package presenting channel Ch1 begins.

3. Bytes [8:11] – integer 3 as the number of points in the package of channel Ch1

4. Bytes [12:15] – ASCII string "Ch1" with terminating zero byte. After that without

any delimiters the sequence of packages presenting the points begins.

5. Bytes [16:18] – ASCII string "P1".

6. Bytes [19:26] – temperature measured at point P1 as double value.

7. Bytes [27:29] – ASCII string "P2".

8. Bytes [30:37] – pressure measured at point P2 as double value.

9. Bytes [38:40] – ASCII string "P3".

10. Bytes [41:44] – level measured at point P3 as integer value. This is also the end of

Ch1 package. The Ch2 package follows.

11. Bytes [45:48] – integer 1 as the number of points in the package of channel Ch2

12. Bytes [49:52] – ASCII string "Ch2".

13. Bytes [53:55] – ASCII string "P4".

14. Bytes [56:63] – flow speed measured at point P4 as double value. This is also the

end of Ch2 package. The Ch3 package follows.

15. Bytes [64:67] – integer 1 as the number of points in the package of channel Ch3

16. Bytes [68:71] – ASCII string "Ch3".

17. Bytes [72:74] – ASCII string "P5".

18. Bytes [75:82] – flow speed measured at point P5 as double value.

The second package described above includes the following bytes:

1. Bytes [0:3] – integer 57 as the total number of bytes in this package.

2. Bytes [4:7] – integer 2 as the number of channels in this package (Ch1 and Ch3

are present, Ch2 is omitted).

3. Bytes [8:11] – integer 2 as the number of points in the package of channel Ch1

(P1 and P2 are present, P3 is omitted).

4. Bytes [12:15] – ASCII string "Ch1".

5. Bytes [16:18] – ASCII string "P1".

6. Bytes [19:26] – temperature measured at point P1.

7. Bytes [27:29] – ASCII string "P2".

8. Bytes [30:37] – pressure measured at point P2.

9. Bytes [38:41] – integer 1 as the number of points in the package of channel Ch3

10. Bytes [42:45] – ASCII string "Ch3".

11. Bytes [46:48] – ASCII string "P5".

12. Bytes [49:56] – flow speed measured at point P5.

The third package described above includes the following bytes:

1. Bytes [0:3] – integer 27 as the total number of bytes in this package.

2. Bytes [4:7] – integer 1 as the number of channels in this package (only Ch2 is

present).

3. Bytes [8:11] – integer 1 as the number of points in the package of channel Ch2.

4. Bytes [12:15] – ASCII string "Ch2".

5. Bytes [16:18] – ASCII string "P4".

6. Bytes [19:26] – flow speed measured at point P4.

C. Application IAS0410ObjPlantLogger

1. General requirements

The obligatory development environment is Microsoft Visual Studio (presumably the

2022 eddition).

To start with, tell the Visual Studio project wizard that you will develop a Windows

Console Application.

The command line launching the logger must have two arguments: the plant number

and the log file name and path, for example:

IAS0410ObjPlantLogger 5 c:\testing\results.bin

The logger must be able to complete the following tasks:

1. Attach and detach the emulator DLL.

2. Read data created by the emulator, add the timestamp and show it in Windows

command prompt window.

3. Stop and restart the data stream from emulator DLL into application.

4. Temporarily break and then resume the data generating and sending.

5. Store the data in log file.

6. Store the data inside logger in a data structure.

7. Read data from log file into the logger inner data structure.

8. Search data from the inner data structure and show the results in Windows

command prompt window.

The human ooperator controls the application with commands typed on the keyboard.

The application code must be object-oriented. All the functions except main() must

be members of classes. All the attributes of classes must have private or protected

access. Usage of the C/C++ goto statement is not allowed.

2. Behavior in abnormal situations

If something has failed (for example, the logger cannot attach the emulator, the

producer thread itself terminates, data sent by emulator are not analysable etc.), the

logger must show a message describing the situation and after that start to wait for the

"exit" command.

It is not possible to get through the evaluation test with logger that crashes or hangs.

3. Data structure to be implemented in the logger5

There are four versions:.

map<string, map<string, list<pair<variant<int, double>,
system_clock::time_point> > > > Data1;
/* It is a C++ map in which the channel names are the keys.The values are
inner C++ maps in which the keys are point names and the values are
lists.The members of lists are pairs in which member "first" is the
measument value and member "second" is the timestamp.*/

map<string, map<string, list<pair<variant<int, double>,
system_clock::time_point> > > * > Data2;
/* It is a C++ map in which the channel names are the keys.The values are
pointers to inner C++ maps in which the keys are point names and the
values are lists.The members of lists are pairs in which member "first" is
the measument value and member "second" is the timestamp.*/

map<string, map<string, list<pair<variant<int, double>,
system_clock::time_point> > * > > Data3;
/* It is a C++ map in which the channel names are the keys.The values are
inner C++ maps in which the keys are point names and the values are
pointers to lists.The members of lists are pairs in which member "first"
is the measument value and member "second" is the timestamp.*/

map<string, map<string, list<pair<variant<int, double>,
system_clock::time_point> > * > * > Data4;
/* It is a C++ map in which the channel names are the keys.The values are
pointers to inner C++ maps in which the keys are point names and the
values are pointers to lists.The members of lists are pairs in which
member "first" is the measument value and member "second" is the
timestamp.*/

To understand the definitions of data structure study chaper Containers and

algorithms. You can find your version number set by the instructor here.

4. Log file

The log file is a binary file specified in the logger command line. It simply contains

packages created and sent by emulator. In other words, the logger writes the sequence

of bytes it has received into log file. To each package the logger must append the

timestamp (see slides Time handling (1)…(9) from chapter Advanced C++):

system_clock::time_point t = system_clock::now();

When the logger starts to run, it must check is the log file empty or not. If there are

data, the logger must read them and store into the data structure.

5 On first reading simply omit this chapter

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Containers%20and%20Algorithms.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Containers%20and%20Algorithms.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Advanced%20Cpp.pdf

5. Keyboard commands controlling the logger

1. “connect”: the logger attaches the DLL and calls method

SetIAS0410PlantEmulator().

2. “disconnect”: the logger detaches the DLL. If the producer thread is running, this

command should be ignored.

3. “start”: the logger sets the state to ‘r’, clears the contents of buffer, launches the

consumer thread and calls RunIAS0410PlantEmulator(). The emulator starts to

generate data. The logger must add timestamp, show the measurement data on

screen and store in data structure and in log file.

4. “stop”: the logger sets the state to ‘s’, thus terminating the producer and

consumer threads. After that the operator may disconnect the DLL or restart the

data generating.

5. “break”: the logger sets the state to ‘b’. The producer and consumer threads

continue to run but the data is not generated.

6. “resume”: the logger sets the state back ‘r’, normal working continues.

7. “print”: the logger shows the contents of data structure in Windows command

prompt window. If the DLL is attached, this command should be ignored.

8. “print channel_name”: the logger retrieves from data structure all the data served

by the specified channel and shows it in Windows command prompt window. If

the DLL is attached, this command should be ignored. Example: “print Ch2”.

9. “print channel_name point_name”: the logger retrieves from data structure all the

data served by the specified channel and specified mesurement point and shows it

in Windows command prompt window. If the DLL is attached, this command

should be ignored. Example: “print Ch2 P4”.

10. “limits channel_name point_name”: the logger finds from data structure the

minimum and maximum values of data served by the specified channel and

specified mesurement point and shows them in Windows command prompt

window. If the DLL is attached, this command should be ignored. Example:

“limits Ch2 P4”.

11. “exit”: must be applicable at any moment. If necessary terminates the threads,

closes the log file, detaches the DLL, clears everything and quits.

If the command is senseless (for example “start” if the DLL is not attached or

“resume” if the producer is not running”), the logger must print message “command

ignored”.

6. Output data formatting

Remark that the values created by emulator are random and may be absolutely

unrealistic.

All the measured values must have units:

Value Unit printf formatting6

Temperature °C "%.1f"

Pressure atm "%.1f"

6 This column presents also the type (int or double) of values

Concentration % "%d"

Level % "%d"

Kinematic viscosity cSt "%.2f"

Turbidity NTU "%.f"

Electrical conductivity S/m "%.2f"

Flow speed m³/s "%.3f"

Quantity kg "%d"

Volume L "%d"

pH - "%.1f"

The printout in command promt window should be similar to the following example:

You are free to print debugging messages (for example, information about starting

and terminating of threads, sending notifications, length of packages, etc.) into the

command prompt window.

Here are examples of answers to inquiries:

7

7. Hints

The command prompt window uses extended ASCII encoding in which the ˚ degree

symbol is 0xF8 ja the ³ cube symbol is 0xFC. The text files, however, use the UTF-8

encoding, in which ˚ degree symbol is 0xB0 ja the ³ cube symbol is 0xB3. The code

snippet

#include <iostream>
#include <fstream>
using namespace std;
int main()
{
 fstream file;
 file.open("C:\\Temp\\Test.txt", fstream::out | fstream::trunc);
 double Temp = 13.5, Flow = 0.08;
 cout << "Temp = " << Temp << "°C" << endl;
 file << "Temp = " << Temp << "°C" << endl;
 cout << "Flow = " << Flow << "m³/s" << endl;
 file << "Flow = " << Flow << "m³/s" << endl;
 return 0;
}

7 To find minimum and maximum use C++ stanard algorithm minmax_element

gives you correct text in file but text in command prompt window may be corrupted.

The problem is in Windows code pages8. To know the console default code page

specified in your system registry write code snippet:
#include "Windows.h"
UINT WINAPI codepage = GetConsoleOutputCP();
cout << codepage << endl;

In codepage 1252 degree and cube symbols should be printed correctly:

#include <iostream>
#include <fstream>
#include "Windows.h"
using namespace std;
int main()
{

UINT WINAPI codepage = GetConsoleOutputCP();
 SetConsoleOutputCP(1252);
 fstream file;
 file.open("C:\\Temp\\Test.txt", fstream::out | fstream::trunc);
 double Temp = 13.5, Flow = 0.08;
 cout << "Temp = " << Temp << "°C" << endl;
 cout << "Flow = " << Flow << "m³/s" << endl;
 file << "Temp = " << Temp << "°C" << endl;
 file << "Flow = " << Flow << "m³/sC" << endl;
 SetConsoleOutputCP(codepage);
 return 0;

}

8. Materials from the instructor

You may freely use (and also copy and paste) sections of code from the example

programs presented and discussed in the lectures.

9. Test cases

The logger works perfectly if the following sequences of commands are performed

correctly and according to the specification:

1. The log file must be empty. Launch the logger and apply the listed commands in

the following order: connect → start → break → resume → stop → disconnect

→print → print a channel data → print a point data → limits of a point → exit.

2. Use the same log file. Launch the logger and apply the listed commands in the

following order: print → print a channel data → print a point data → limits of a

point → connect → start → exit.

3. Use the same log file. Launch the logger and apply the listed commands in the

following order: connect → disconnect →start →connect →start →disconnect

→stop →start → break →exit.

4. Use the same log file. Launch the logger and apply the listed commands in the

following order: connect → start → resume →stop → connect → print →start

→start →stop → stop → exit.

Remark: the logger must ignore commands printed in red.

8 See https://docs.microsoft.com/en-us/windows/console/console-code-pages and

https://en.wikipedia.org/wiki/Windows_code_page

https://docs.microsoft.com/en-us/windows/console/console-code-pages
https://en.wikipedia.org/wiki/Windows_code_page

10. Evaluation and deadline

A student may earn up to 20 points:

• Application is fully in accordance with the specification and passes all the test

cases – 20 points.

• Some test cases fail and / or the specification is not followed – 15 points.

• None of the test cases passes – 10 points.

• The code is not finished, compiling and / or linking is not possible – 5 points.

• The presented code is a partial or full plagiarism – 0 points.9

• Nothing is presented - 0 points.

The final mark is calculated from table presented here.

The deadline is the end of session. However, the students may present the coursework

before the deadline. The reception time is after each lecture in October, November

and December. There will be also several reception times in January.

The evaluation is provided only once and the number of earned points is final. There

is no possibility to increase it later. To get the assessment the students must attend

personally. Electronically (e-mail, git, etc.) sent coursework results are neither

accepted nor reviewed.

Presenting the final release is not necessary. It is OK to demonstrate the work of your

application in Visual Studio environment.

D. Application IAS0410QtPlantLogger

1. General requirements

The application must consist from two parts:

1. Graphical user interface (GUI) implemented in Qt framework.

2. DLL implemented in Visual Studio.

Here the DLL performs the same tasks as application IAS0410ObjPlantLogger

specified above. The difference is that the commands controlling the logger are not

typed on the keyboard but imported from GUI.

2. Hints

First implement application IAS0410ObjPlantLogger and make certain that it operates

correctly. Follow all the requirements presented above.

As the second stage rework the application into DLL and implement the GUI10.

9 As said, copy and paste of code snippets from the material presented by intructor is allowed
10

You may try to write the complete code in Qt, skipping the implementation of

IAS0410ObjPlantLogger. However, do not forget that if you have finished with

IAS0410ObjPlantLogger, you already have something to present for evaluation and failure with Qt

does not lead to fatal consequencies. Turn attention that there will be no lectures about Qt and you have

to learn the programming in Qt (only the basic knowledge is needed) on your own.

The set of slides (see Introduction to Qt) covering Qt programming contains also

topics that are not in direct connection with problems you need to solve in our

coursework. Therefore:

1. First install Qt and initialize the kits (slides About Qt, Installation and First steps

with QtCreator (1) … (5)).

2. Use QtCreator to implement (not just read but write the code, build the application

and study what files you have got) some simple projects (slides First steps with

QtCreator (6) … (11), examples QtFirst and QtSecond from Qt example

projects).

3. Make it clear to yourself the Qt mechanism of signals and slots (slides Signals and

slots (1)…(5), examples QtThird and QtFourth from Qt example projects).

4. Learn how to use layouts (slides Layouts (1)…(4)) and try to build you GUI.

5. To understand how to deal with simple Qt threads study slides QtThreads (1) …

(3) and example QtSeventh from Qt example projects.

6. Read how to use third-.party DLLs in QT (slide Third-party DLLs)

3. Requirements on the graphical user interface

The graphical user interface must contain the following Qt widgets:

The Open QPushButton opens the QFileDialog dialog box thus allowing the user to

select the log file. The button can be enabled only when the file is not selected.

The Close QPushButton closes the selected data file. It can be enabled only when the

user has already opened the file and the emulator is not connected.

The Connect QPushButton is for sending the Connect keyboard command. It can be

enabled only when the user has already opened the file but the emulator is not

connected yet.

The Disconnect QPushButton is for sending the Disconnect keyboard command. It

can be enabled only when the connection has been established but the emulator has

not started yet.

The Start QPushButton is for sending the Start keyboard command. It can be enabled

only when the connection has been established but the emulator has not started yet.

The Break QPushButton is for sending the Break keyboard command. It can be

enabled only when the emulator is running.

The Resume QPushButton is for sending the Resume keyboard command. It can be

enabled only when the data sending is temporarily broken off.

The Stop QPushButton is for sending the Stop keyboard command. It can be enabled

only when the emulator is running.

The Show QPushButton is for sending the Print, Print channel_name and Print

channel_name point_name keyboard commands. The channel name and the point

name must be typed into Channel and Point QLineEdit boxes11. All the mentioned

three widgets can be enabled only when the emulator is not connected. The results

must be sent into Logbook.

11 If the both QlineEdit boxes are empty, the Print command is supposed. If the Point box is empty, the

Print channel_name command is supposed.

https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20Qt.pdf
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html
https://www.tud.ttu.ee/im/Viktor.Leppikson/IAS0410%20PracticalWork.html

The Limits QPushButton is for sending the Limits Print channel_name point_name

keyboard command. The channel name and the point name must be typed into

Channel and Point QLineEdit boxes.All the mentioned three widgets can be enabled

only when the emulator is not connected. The results must be sent into Logbook.

The Exit QPushButton quits the application. It must be enabled all time.

The Logbook QPlainTextEdit is to inform the user about the download progress.

After a package has arrived, it must immediately show its contents.

When an error has occurred (for example, opening the file failed), the application

must inform the user displaying a message in logbook or in a QMessageBox.

The X close button on the right up corner must operate as the Exit QPushButton.

Enlarging and shrinking of the main window must not affect on the dimensions of

buttons (i.e. the buttons must always have the same width and height). The

QPlainTextEdit and QLine Edit dimensions should depend on the dimensions of the

main window.

Example:

4. About cooperation between DLL and GUI

The GUI needs one additional thread. The GUI thread and the consumer thread from

DLL comprise a typical producer / consumer pair sharing a buffer (now the consumer

in DLL is the producer for GUI). The receiver stores the log data into file, converts

into text and stores the text into buffer. The GUI thread (it must be an object of class

derived from QThread) takes data from buffer and emits signal transporting the data

to the main window. To synchronize their work Qt objects like QMutex and

QWaitCondition are not applicable but you may replace them with C++ std::mutex

and std::condition_variable. Use code from GUI to create synvhronization variables

and copy the pointers to them into DLL.

The IAS0410ObjPlantLogger has a thread for communication with keyboard. In DLL

it is not needed: instead of keyboard the commands now come from GUI. The Qt slots

corresponding to signals from GUI buttons transfer the commands into DLL.

5. More hints

To convert log data to text use stringstreams like:

stringstream sout;
char *pBuf;
int bufLength;
double Temp = 13.5, Flow = 0.08;
sout << "Temp = " << Temp << "°C" << endl;
sout << " Flow = " << Flow << "m³/s" << endl;
strcpy_s(pBuf, bufLength, sout.str().c_str());

To view data in Qt window convert the C string from shared buffer pBuf to QString:

QString logData = QString::fromLocal8Bit(pBuf);

Usually the IAS0410ObjPlantLogger sends to cout also a lot of debugging

information, for example the sequences of sent and read bytes in hex. You may

redirect the output stream into a file. Read https://www.geeksforgeeks.org/io-

redirection-c/.

6. Evaluation and deadline

A student may earn up to 30 points:

• Application is fully in accordance with the specification and passes all the test

cases – 30 points.

• From esthetic point of view the GUI is unsatisfactory and / or the behavior of

buttons is not in fully accordance with the specification – 25 points.

• The application is not able to work – 15 points.

• The code is not finished, compiling and / or linking is not possible – 10 points.

• The presented code is a partial or full plagiarism – 0 points.12

• Nothing is presented - 0 points.

12 As said, copy and paste of code snippets from the material presented by intructor is allowed

https://www.geeksforgeeks.org/io-redirection-c/
https://www.geeksforgeeks.org/io-redirection-c/

The deadline is the end of session. However, the students may present the coursework

before the deadline. The reception time is after each lecture in October, November

and December. There will be also several reception times in January.

The evaluation is provided only once and the number of earned points is final. There

is no possibility to increase it later. To get the assessment the students must attend

personally. Electronically (e-mail, git, etc.) sent coursework results are neither

accepted nor reviewed.

Presenting the final release is not necessary. It is OK to demonstrate the work of your

application in QtCreator environment.

E. Marks

The final mark (examination result) is computed from the sum of points:

• 26…30 points – "5".

• 20…25 points – "4".

• 15…19 points – "3".

• 10…14 points – "2".

• 5…9 points – "1".

• 0…4 points – "0".

If a student has presented the IAS0410ObjPlantLogger and then comes with

IAS0410QtPlantLogger, the points earned for IAS0410ObjPlantLogger are canceled.

